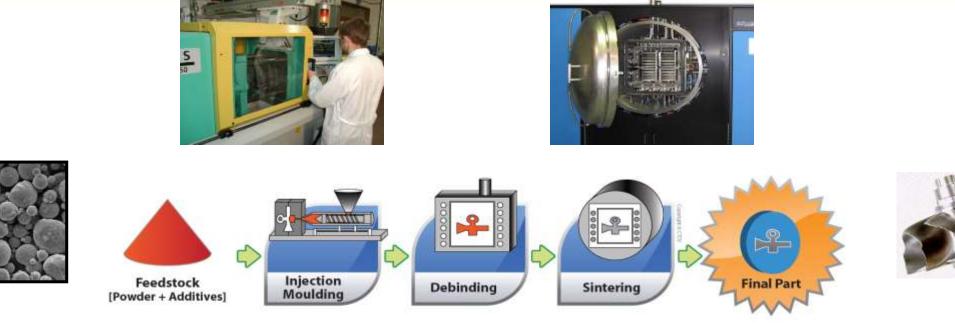
PIM Technology

a powder technology for complex small engineering parts

- Powder Injection Moulding (PIM)
 - metals (MIM)
 - ceramics (CIM)
 - cemented carbides (CCIM)


PIM is a new process for material shaping that combines the flexibility and high productivity of thermoplastic injection moulding with the performance of the metallic and ceramics parts.

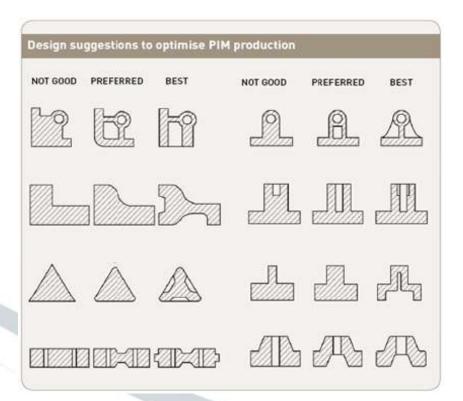
Near-net shape powder technology for component shaping

PIM technology allows to the production of high precision small parts without necessary to post-machining, with a significant cost reduction.

Main advantages:

- One-step shaping of very complex part geometries
- A cost-effective production route for difficult machinable materials
 - Low to high series production
 - Raw material use rate up to 100%

• part selection general criteria


	minimum	maximum	optimum
mass (steel)	0.01g	250g	<50g
wall thickness	0.1mm	8mm	2mm
max. linear dimension	3 mm	100 mm	25 – 50 mm

Design can be optimised...

some rules to design a PIM candidate part or to ease the production process/ reduce material consumption

examples of PIM parts

Fig. 12 Examples of MIM parts showing the geometric attributes favored in production

• PIM tolerance table

dimension (mm)	tolerance (mm)
< 3	± 0.05
3 – 6	± 0.06
6 – 15	± 0.075
15 – 30	± 0.15
30 - 60	± 0.25
> 60	± 0.5%

- Better than medium class tolerancing nearly fine of machining processes (ISO 2768)
- MIM parts can be machined and grinded to tighter tolerances, as in conventional technologies

Materials

- metals (MIM)
- ceramics (CIM)
- cemented carbides (CCIM)

carbonyl steels	1010, 1060
low alloy steels	Fe-2Ni (MIM220), Fe-2Ni-0.5C, Fe-8Ni (MIM2700), Fe-8Ni-0.5C, 42CrMo4 (MIM4140), 4340, 100Cr6, 8620, 8740, 16MnCr5
stainless steels	304L, 310, 316L, 420, 430, 440B, 440C, 17-4PH, F75, PANACEA
tool steel	M2
soft magnetic alloys	Fe, Fe-3Si, Fe-50Ni
special alloys	Inconel 718/713, Hastelloy X, Ti, Ti6Al4V, Tungsten heavy alloys
heat transfer materials	Copper alloys
cemented carbides	WC-Co
fine ceramics	Alumina, Zirconia, Alumina-Zirconia

» Material properties according to MIM standards (ASTM B883 and ISO 22068)

» Other material grades under request

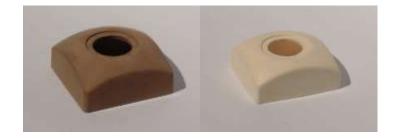
2 Moulding techniques for production from prototypes to large series:

- Higher pressure injection moulding
- Lower pressure injection moulding

	Higher pressure PIM	Lower pressure PIM
Mould tooling cost	High	Low
Prototyping capability	Low	High
Short production capability	Low	High
Large production capability	High	Medium

Production schemes

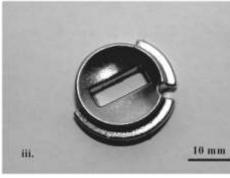
• Flexible Production


Type of raw materials:

- Ready-to-mould feedstock
- Customised in-house compounded feedstock

Type of binder systems:

- Catalytic debinding
- Thermal debinding
- Solvent / Water debinding



Experience

- Household & personal
- Industrial tools
- Automotive components
- Miniaturization
- Hardmetal
- Titanium for medical and
 - mechanical applications

ii.

10 mm

Best equipment for the best production

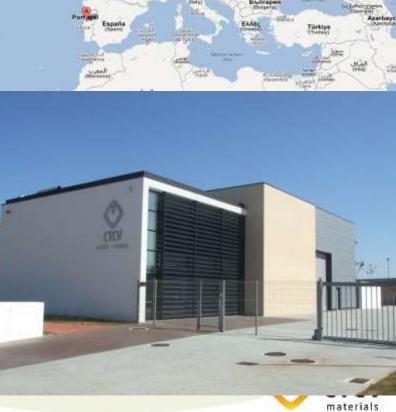
Main equipment for process full chain

- Compounding
 - binder and feedstock compounders
- Moulding
 - Higher and lower pressure moulders
- Debinding
 - Diverse debinding method furnaces
- Sintering
 - Sintering of ceramics
 - Sintering of metals in multiple and pure atmospheres

Quality and development lab

List of Main Equipments

- Rheology: high pressure capillary, Plastograph, Brookfield and rotational rheometers
- Microscopy: optical and scanning electron microscopy
- Metallography and ceramography
- Particle size: Sedigraph, Laser light scatter
- Thermal analysis: TGA, DSC, STA, DIL
- Helium pycnometer
- X-ray difractometer
- X-ray fluorescence
- Hardness and microhardness tester
- Tensile and flexure testing equipments
- Thermal conductivity meter



Contact

CTCV Solar Nano Building
Coimbra iParque Lt.7
3040-540 Antanhol Coimbra - Portugal
(E-mail) <u>hrjorge@ctcv.pt</u>
(Phone) +351 239 499 217